
EXTRA CSS3. #4

There are 3 places you can write CSS.

• The best option is to write CSS is in a separate .css file. You then
link that file to your HTML file in the head of your document:
<link rel="stylesheet" href="css/screen.css">

• You can also write CSS in the <head> of each HTML page.
<style>
 p{
 color:red;
 }
</style>

• Or the last resort is to write CSS inline within a HTML element. To
do that you add an attribute to the opening tag:
<p style="color:red;">This will be red</p>

• You can use all 3 variations simultaneously if you wish. You can
also load mulitple external CSS files.

Where to write CSS.

There are 3 parts to a rule, the selector, the
property and the value.

• The punctuation is very important.
- Each selector is followed by a set of curly brackets.
- Inside this a property is followed by a colon
- and the value is followed by a semi-colon.

CSS syntax.

p
selector

property value

color:red;

{

}

A block HTML element can consist of margins,
borders, padding and the content.

The Box Model.

Margin

Padding

Border

Content

Content
The content of the HTML
element, where text and images
appear.

Padding
Clears an area around the
content but inside the border. It
will have the background style of
the element.

Border
The border goes outside the
content and padding.

Margin
Clears an area outside the
border. It is transparent.

The Box Model.

Margin

Padding

Border

Content

Margin makes an empty area or spacing around an
HTML element. The margin area is transparent. You
can use px or % as the unit.

Margin.

h1

margin:20px;

{

}

Margin.

h1
margin:20px 15px 10px 5px;

{

}

There are 2 shorthand versions of margin. The first
allows you to write the 4 values in one line. The
order is top, right bottom, left.

margin:20px 15px;
or

Margin.

h1
margin:20px auto;
width:400px;

{

}

You can use the value 'auto' for the left and right
margins that allows you to center an element
horizontally. You also need to set a width.

Margin.

h1

margin-left:20px;

{

}

You can also define one margin side at a time.

Padding makes an empty area or spacing around
an HTML content but inside the border. The
padding area will use the background style of the
HTML element. You can use px or % as the unit.

Padding.

h1

padding:20px;

{

}

Padding.

h1

padding:20px 15px 10px 5px;

{

}

Like margin, there are the same 2 shorthand
versions of padding. The first allows you to write
the 4 values in one line. Again the order is top, right
bottom, left.

padding:20px 15px;
or

Width.

h1

width:250px;

{

}

The default width of a block element is 100%. You
can set a smaller width in CSS.

Width.

p

max-width:450px;

{

}

You can also set a max-width. This is useful for
responsive websites and different screen sizes.

The max-width rule below will allow the element
to reach a maximum width of 450px. At smaller
screen sizes, it will be 100% wide.

Height.

p

height:450px;

{

}

You can also set a height for an element. Generally
setting a height is not advisable as you can have
problems if the content doesn't fit in the space
defined.

Height.

p

min-height:450px;

{

}

A compromise is to use min-height. The rule below
will set the element to be at least 450px high but
allow it to expand if the content inside is taller.

Working out Size

There are 2 ways to calculate
the size of an element. You can
change this by using the CSS rule

box-sizing:border-box;

or the default is

box-sizing:content-box;

The Box Model.

Margin

Padding

Border

Content

With content-box, you set the width and height of the content area.
To calculate the full size that element takes up, you must also add
padding, borders and margins.

.box{
 width:250px;
 padding:25px;
 margin:25px;
 border:5px solid #FFDA00;
}

The Box Model.

Margin

25px 25px25px

5px 5px250px

360px

25px

Border

Content

Padding

With border-box, the width and height you set include any
padding,borders and the content area. To calculate the full size that
element takes up you only add margins.

.box{
 box-sizing:border-box;
 width:250px;
 padding:25px;
 margin:25px;
 border:5px solid #FFDA00;
}

The Box Model.

25px 25px25px

5px 5px

250px

300px

25px

Border

Content

Padding

Unpredictable.

CSS can be quite an unpredictable language to use.
Browsers can treat CSS rules differently. One way
to help is to use a CSS browser reset file.

A good one is normalize.css , you can copy the CSS
code from https://necolas.github.io/normalize.
css/

You can then save it as a separate CSS file or place
it at the top of an existing CSS file. If you save it
separately, then you need to link it from your HTML
pages.

Normalize.css makes browsers render all elements
more consistently and in line with modern
standards.

Unpredictable.

Writing CSS layouts almost always involves trial
and error and adjustments.

There can be multiple ways to achieve a similar
effect but one may work better than another in a
certain scenario.

Don't be afraid to try a method, copy your code
and try another.

Always remember to ensure your browser is
loading the newest version of the stylesheet. You
can use cmd+r on a mac or f5 on a pc.

Display mode.

The display property allows you to define if and
how an element is displayed. All HTML elements
have a default display mode but you can overwrite
them.

The 4 main options are block, inline, inline-block
and none. There is also a new mode called flex

h1 = block (100% wide)

p = block (100% wide)

span = inline
(auto width)

a = inline (auto width) img = inline (auto
width)

Display mode.

A block-level element starts on a new line and
takes up the full width available.

An inline element does not start on a new line and
only takes up as much width as necessary.

h1 = block (100% wide)

p = block (100% wide)

span = inline
(auto width)

a = inline (auto width) img = inline (auto
width)

Display mode.

img
display:block;
margin:20px;

{

}

One example where you may change display mode
is with an image. Adding margin, padding, widths
or heights to inline elements can be unpredictable.

Positioning.

The position property allows you to take an
element out of the flow of the page. The default
position value is static. The other options are
relative, absolute and fixed.

Setting an absolute or fixed position takes that
element out of the flow of the page and elements
that follows will fill in the gap left behind.

One problem is that you can be left with
overlapping content so care is needed to keep an
accessible, usable design.

Positioning.

position:fixed; is used to set a position relative to
the browser window. A fixed element will not move
if a user scrolls their window.

A common implementation of position:fixed; is for
a sticky navigation or footer.

Positioning.
nav{

position:fixed;
width:100%;
top:0;
left:0;

}

Positioning.

position:absolute; allows you to position an HTML
element relative to another element. Again it is
taken out of the flow and other content fills the
space.

Instead of being positioned relative to the
viewport, an element is positioned relative to the
nearest positioned parent. A positioned parent is
an element with position:relative;

If no parent is positioned, the element will be
positioned relative to the browser window.

Unlike a fixed element, an absolute positioned
element will move as the user scrolls.

container

Positioning.

popout

.container{
 width:600px;
 position:relative;
}

.popout{
 position:absolute;
 background:orange;
 bottom:0;
 right:0;
 width:300px;
}

container

Positioning.

popout

<div class="container">

 <p>Pellentesque habitant
morbi tristique senectus et netus
et malesuada fames ac turpis
egestas. Vestibulum tortor quam,
feugiat vitae, ultricies eget, tempor
sit amet, ante.</p>

 <div class="popout">
 <p>Pellentesque habitant
morbi tristique senectus et netus
et malesuada fames ac turpis
egestas. Vestibulum tortor quam,
feugiat vitae, ultricies eget, tempor
sit amet, ante.</p>
 </div>

</div>

Positioning.

When elements are positioned absolute or fixed,
they can overlap other elements.

The z-index property is similar to the order of
layers in Photoshop or Illustrator. It specifies which
element should be placed in front or behind the
others.

The higher the z-index the higher that element will
display.

nav{ .popout{

z-index:10; z-index:15;

} }

Floating.

In its simplest use, the float
property can be used to wrap text
around images.

img {
 float: right;
}

You can float an element to the
left or to the right. Any content
that follows will wrap around the
element if possible.

Pellentesque
habitant
morbi tristique
senectus
et netus et
malesuada
fames ac turpis
egestas. Vestibulum tortor
quam, feugiat vitae, ultricies
eget, tempor sit amet, ante.

Pellentesque habitant morbi
tristique senectus et netus et
malesuada fames ac turpis
egestas. Vestibulum tortor
quam, feugiat vitae, ultricies
eget, tempor sit amet, ante.

Floating.

Floating also takes an element out
of the flow of the page.

By default the parent element of a
floated element will disregard the
height of the floated element. This
can lead to problems.

If the content is not longer than the
floated element, the height can be
incorrect.

There is a fix for this, generally
called clearfix.

A good fix is available at
nicolasgallagher.com/micro-
clearfix-hack/

Pellentesque
habitant
morbi tristique
senectus.

Floating.

Here is a simplfied version

.clearfix:before, .clearfix:after {
 content: " ";
 display: table;
}
.clearfix:after {
 clear: both;
}
.clearfix {
 *zoom: 1;
}

Floating.

You can apply this clearfix in 2
ways.

The more efficient way is to apply it
to the parent element that contains
the floated element.

<div class="clearfix">

 <p> Pellentesque habitant morbi
tristique senectus.</p>

</div>

Pellentesque
habitant
morbi tristique
senectus.

Floating.

You can also create a HTML
element with a class clearfix just to
fix the float.

The disadvantage with this method
is that you are adding HTML
elements that are solely required
for layout.

<div>

 <p> Pellentesque habitant morbi
tristique senectus.</p>
 <div class="clearfix"></div>

</div>

Pellentesque
habitant
morbi tristique
senectus.

Floating.

Using the same principles and the
clearfix, you can float divs to make
layouts.

.col{
 width:33%;
 float:left;
}

Pellentesque
habitant morbi
tristique senectus.

Pellentesque
habitant morbi
tristique senectus.

Pellentesque
habitant morbi
tristique senectus.

Floating.

<div class="clearfix">
 <div class="col">
 <p> Pellentesque habitant morbi tristique senectus.</p>
 </div>
<div class="col">
 <p> Pellentesque habitant morbi tristique senectus.</p>
 </div>
<div class="col">
 <p> Pellentesque habitant morbi tristique senectus.</p>
 </div>
</div>

Pellentesque
habitant morbi
tristique senectus.

Pellentesque
habitant morbi
tristique senectus.

Pellentesque
habitant morbi
tristique senectus.

Flex

There is a new display mode called flex designed for
layouts. Read more at css-tricks.com/snippets/css/a-guide-
to-flexbox/

.container{
 display:flex;
}

.container div{
 flex-grow:1;
}

<div class="container">
 <div>...</div>
 <div>...</div>
 <div>...</div>
</div>

Pellentesque
habitant morbi
tristique senectus.

Pellentesque
habitant morbi
tristique senectus.

Pellentesque
habitant morbi
tristique senectus.

Resposive CSS rules.

You can write CSS rules for certain screen sizes. These are
generally split by breakpoints that suit certain screen types, e.g.
tablet, smartphone, laptop/desktop and bigger monitors.

You write CSS rules as before. This difference is you wrap the
Screen size rules with another set of curly brackets so the rules
become nested.

@media screen and (max-width: 480px) {
 p{
 font-size:11px;
 }
 .container{
 padding:15px;
 }
}

CSS Assignment

Using the same HTML content, create 3 visually different versions an About page
using just CSS. http://www.csszengarden.com demonstrates this principle.

The HTML content is at ixdncad.com under class #4

The only HTML changes you can make are:
- Path to the CSS files in the head
- Path and alt attributes for the 2 images
- The text in the <h1></h1> and <title></title> Tags

The 3 pages should represent:
- An architectural/design led consultancy
- A governmental body/department
- A new 'branded' drink/food company

Guidelines

• You cannot use Bootstrap or other CSS frameworks.

• You can use background images on any element.

• The intention is to explore the possibilities of CSS layouts, you will be graded on
how different the 3 layouts are to each other.

• This is a demonstration of CSS so you can go be conceptual with your layouts
and styles.

• Remember to use child parent selectors .main p{ You can't add new classes and
ids to your HTML

